1. Introduction We begin by introducing some terminology about graphs. A (simple) graph is comprised of a set of $vertices\ V$ together with a set of $edges\ E$, which are two-element subsets of V. Define the degree of a vertex v as the number of edges in E that contain v, and the number of vertices in G to be its order. A bipartite graph is one where the vertices can be split into two sets such that no edge appears between vertices of the same set. Define a cycle to be a set of vertices $v_1, ..., v_n$ such that each v_i and v_{i+1} has an edge between them, as does a_n and a_1 . Define a $perfect\ matching$ to be a set of edges E' in G where each vertex is the endpoint of exactly one edge in E'; for example, in the graph we have the following three perfect matchings: ### 2. Matchings 1. (a) [1] Draw a perfect matching on the following graph. We define K_n to be the complete graph on n vertices; that is, we have n vertices with each pair of distinct vertices being connected by an edge. - (b) [2] Find an expression for the number of perfect matchings of K_{2n} , and compute this value for n=6. - (c) [3] Let P_n be a regular n sided polygon with n vertices and n edges. Let Q_n be a graph composed of n+1 copies of P_n , called $\mathfrak{P}_0, \mathfrak{P}_1, ..., \mathfrak{P}_n$, in the following way: Let the vertices of \mathfrak{P}_0 be $v_1, ..., v_n$. Then for $1 \leq k \leq n$, \mathfrak{P}_k shares exactly v_k, v_{k+1} with \mathfrak{P}_0 (taking $v_{n+1} = v_1$), and does not share any edges with any other \mathfrak{P}_i . An example for n=5 is given below: Find an expression for the number of perfect matchings of Q_n . (d) [3] Is there a perfect matching of this graph? If so, find one. If not, prove that none exists. 2. (a) [3] What is the number of perfect matchings on the following graph? (b) [3] What is the number of perfect matchings on this graph? - 3. [2] A forest is defined as a graph having no cycles. Show that a forest has at most 1 perfect matching. - 4. [5] Show that if G is a graph of order 2n so that every vertex of G has degree $\geq n$, then G has a perfect matching. 5. [8] Define $\operatorname{adj}(S)$ as the set of vertices that are adjacent to at least one vertex in S. Define G to be a bipartite graph with vertex sets V_1, V_2 (that is, all edges have endpoints in a vertex in V_1 and V_2). Prove that a bipartite graph has a perfect matching if and only if for every subset $S \subseteq V_1$, $|\operatorname{adj}(S)| \ge |S|$ where |S| denotes the size of the set S. #### 3. Recurrences A recurrence is a sequence a_n where each new term is generated by a function of the ones before it. Often, initial conditions are specified, to give the starting point for the recurrence. For example, a particularly famous recurrence is the Fibonacci sequence, which has initial conditions $F_1 = 1, F_2 = 1$, and recursion formula $F_n = F_{n-1} + F_{n-2}$ for n > 2. - 6. (a) [3] Show that all terms x_n of the recurrence given by $x_n x_{n-2} = x_{n-1}^2 + 1$ with initial conditions $x_0 = 1, x_1 = 1$ are integers. - (b) [4] Find and prove an expression for the x_n in part (a) in terms of the Fibonacci numbers. We consider sequences a_n given by recurrences of the form $$a_n a_{n-m} = a_{n-i} a_{n-j} + a_{n-k} a_{n-l},$$ where $m = i + j = k + l$ and with initial conditions $a_0, a_1, \ldots, a_{m-1}$. We call this the *three-term Gale-Robinson recurrence*. The *Somos-4 sequence*, s_n , a special case of a family of sequences introduced by Michael Somos, is a three-term Gale-Robinson sequence with the following conditions: $$m = 4,$$ $i = 1,$ $j = 3,$ $k = l = 2,$ $s_0 = s_1 = s_2 = s_3 = 1.$ - 7. [1] Calculate $s_4, s_5, s_6, \text{ and } s_7.$ - 8. [10] Prove that all terms of the Somos-4 sequence are integers. - 9. [10] Suppose instead that we still have m=4, i=1, j=3, k=l=2, but different initial values a_0, a_1, a_2, a_3 . However, $a_0, ..., a_7$ are integers. Let a_i be written in the form $\frac{n_i}{d_i}$, where n_i, d_i are integers and $\gcd(n_i, d_i) = 1$. Show that for any natural number i and any prime $p|d_i$, we have $p|\gcd(a_2, a_3, a_4)$. - 4. Tying It All Together - 10. [8] Show that the number of matchings g_n for the following graph satisfies the recurrence $g_n g_{n-2} = g_{n-1}^2 + 2$. We consider the Aztec Diamond graphs, which consist of a row of 1 square centered atop a row of 3 squares, ..., a row of 2n-1 squares, then symmetrically at the bottom. The first few Aztec Diamonds are shown here: - 11. [4] Show that every perfect matching of an Aztec Diamond must contain either both the topmost and bottommost edges, or both the leftmost and rightmost edges. - 12. (a) [12] The number of perfect matchings on the Aztec Diamond of size n satisfies a Gale-Robinson recurrence. Find the initial conditions, and the i, j, k and l for this sequence. - (b) [8] Find an explicit formula for the number of perfect matchings of an Aztec Diamond of size n.