
BMT 2021 Calculus Test Solutions November 20–21, 2021

1. Let g(x) =
∫ x
2021(e

t − 2t) dt. Compute g′(2021).

Answer: e2021 − 4042

Solution: By the Fundamental Theorem of Calculus, g′(x) = ex − 2x. So, the answer is

e2021 − 4042 .

2. Let f(x) = (x+ 3)(2x+ 5)(3x+ 7)(x+ 1). Compute f (4)(5). (Note that f (4)(5) = f ′′′′(5).)

Answer: 144

Solution: Note that f(x) is a quartic, so taking the fourth derivative gives us a constant, and
we only need to care about the x4 term. This term ends up being 6x4, and its fourth derivative
is 6 · 4! = 144 , our answer.

3. A quadratic function in the form x2+ cx+ d has vertex (a, b). If this function and its derivative
are graphed on the coordinate plane, then they intersect at exactly one point. Compute b.

Answer: 1

Solution: The quadratic function with vertex (a, b) is (x−a)2+b, and its derivative is 2(x−a).
When we set them equal, we expect the resulting equation (x−a)2+b = 2(x−a) to have exactly
one solution. Moving all terms to the left side, (x − a)2 − 2(x − a) + b = 0, and now we can
complete the square: ((x− a)− 1)2 − 1 + b = 0. So (x− a− 1)2 = −b+ 1, and for this equation
to have exactly one solution, we must have −b+ 1 = 0, or b = 1 .

4. Compute the area of the region of points satisfying the inequalities y ≤ 4 − x2

9 , y ≥ x2

9 − 4,

x ≤ 4− y2

9 , and x ≥ y2

9 − 4.

Answer: 52

Solution: The region enclosed by these parabolas is a square with extra parabola lumps of equal
size, with vertices at the intersections of the parabolas at (±3,±3). The area of a parabola lump

is
∫ 3
−3((4 −

x2

9 ) − 3) dx = 4, and the area of the square is 62 = 36, so the area of the region is

36 + 4 · 4 = 52 .

5. Suppose the following equality holds, where a, b, c are integers and K is the constant of integra-
tion: ∫

sina(x)− cosa(x)

sinb(x) cosb(x)
dx =

cscc(x)

c
+

secc(x)

c
+K.

If a = 2021, compute a+ b+ c.

Answer: 6060

Solution: We see that

∫
sina(x)− cosa(x)

sinb(x) cosb(x)
dx =

∫ (
sina−b x

cosb x
− cosa−b x

sinb x

)
dx ,

and
d

dx

[
cscc x

c
+

secc x

c

]
= − cscc x cotx+ secc x tanx = − cosx

sinc+1 x
+

sinx

cosc+1 x
,

so

− cosx

sinc+1 x
+

sinx

cosc+1 x
=

sina−b x

cosb x
− cosa−b x

sinb x
.
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This gives us a system of equations {
a− b = 1,

c+ 1 = b.

By plugging in a = 2021, we get b = 2020 and c = 2019, so a+ b+ c = 6060 .

6. Let x1 = −4, and for n ≥ 1, define xn+1 = −4xn . Similarly, let f1(x) = sin (arccosx), and for
n ≥ 1, define fn+1(x) = f1(fn(x)). Compute

lim
n→∞

fn(2
xn).

You may assume that this limit exists.

Answer: 1√
2

Solution: We start by finding lim
n→∞

xn. Say that this limit evaluates to x. We are given that

xn+1 = −4xn .

Taking the limit of both sides as n → ∞,

x = −4x.

Drawing the graphs for these functions, we observe that they intersect only once. Hence, there
is only one solution for x. After some guess and check, we find that x = −1

2 works and must be
the unique solution.

We now evaluate the desired limit:

lim
n→∞

fn(2
xn) = lim

n→∞
fn(2

x) = lim
n→∞

fn

(
1√
2

)
.

Note that f1

(
1√
2

)
= 1√

2
, so it can be shown through induction that fn

(
1√
2

)
= 1√

2
for all

integers n.

Therefore, we have lim
n→∞

fn(2
xn) =

1√
2
.

7. Let c(x) = ex+e−2x

2 , defined on the interval 1 ≤ x ≤ 2. Let c−1(x) be the inverse of c(x).
Compute ∫ c(2)

c(1)
c−1(x) dx .

Answer: 1
2
e2 + 5

4
e−4 − 3

4
e−2

Solution: We consider the following identity, which can be derived from a graphical view of the
problem below:
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xa b

f(a)

f(b)

af(a)

∫ f(b)

f(a)
g(x) dx

∫ b

a
f(x) dx

Thinking of the integral as an area under the curve, we have:

∫ b

a
f(x) dx+

∫ f(b)

f(a)
g(y) dy + af(a) = bf(b),

where g and f are inverse functions.

Thus,

∫ c(2)

c(1)
c−1(x) dx = 2c(2)− c(1)−

∫ 2

1
c(x) dx

= e2 + e−4 − e+ e−2

2
− 1

2

∫ 2

1
ex + e−2x dx

= e2 + e−4 − e

2
− e−2

2
− e2

2
+

e

2
+

e−4

4
− e−2

4

=
1

2
e2 +

5

4
e−4 − 3

4
e−2.

Thus our answer is
1

2
e2 +

5

4
e−4 − 3

4
e−2 .

8. Define

fn(x) =

∫ x

0

t6n−1

1 + t3
dt

for positive integers n and real numbers 0 ≤ x ≤ 1. We can write fn(x) = c · log(p(x)) + hn(x),
where p(x) and hn(x) are polynomials with real coefficients with p(x) monic (coefficient of the
highest degree term is 1), and c is a real number. Compute

lim
n→∞

hn(1).

Answer: ln 2
3

Solution: Note that the base of the log does not matter, as value of c changes as the base of
the log changes by change of base. We consider the log to be base e.
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First, note that limn→∞
t6n−1

t3+1
= 0 for 0 ≤ t < 1, and limn→∞

t6n−1

t3+1
= 1

2 for t = 1. Taking the
integral to be the area under the curve, we have

lim
n→∞

fn(x) = lim
n→∞

∫ 1

0

t6n−1

t3 + 1
dt = 0.

Therefore,
lim
n→∞

hn(x) = − lim
n→∞

c ln(p(x)).

Next, we classify the possible polynomials p(x) could be. Taking the derivative of both sides of
fn(x) = c · ln(p(x)) + hn(x) gives

x6n−1

1 + x3
= f ′

n(x) =
cp′(x)

p(x)
+ h′n(x),

or
x6n−1p(x) = (1 + x3)(cp′(x) + h′n(x)p(x)).

Then 1 + x3 must divide x6n−1p(x), but x6n−1 and 1 + x3 do not share any complex roots, so
1 + x3 must divide p(x). Let p(x) = (1 + x3)q(x), where q(x) is a real (monic) polynomial.

Plugging in, we have that

x6n−1(1 + x3)q(x) = (1 + x3)(c((1 + x3)q′(x) + 3x2q(x)) + h′n(x)(1 + x3)q(x),

so
(x6n−1 − 3cx2 − h′n(x))q(x) = c(1 + x3)q′(x).

Suppose q(x) shares no complex roots with 1 + x3 and has degree ≥ 1. Then q(x) | q′(x),
which is not possible, as the degree of q(x) is larger than the degree of q′(x). Thus, q(x)
must either be 1 or share a root with 1 + x3. Since q(x) is a real polynomial, q(x) must be
of the form (1 + x)a(1 − x + x2)b, where a and b are natural numbers. Equivalently, p(x) =
(1 + x)a+1(1− x+ x2)b+1 for natural numbers a and b.

Plugging this in gives

x6n−1(1 + x)a+1(1− x+ x2)b+1

=(1 + x3)(c(1 + x)a(1− x+ x2)b
(
(a+ 1)(1− x+ x2) + (b+ 1)(−1 + 2x)(1 + x)

)

+ h′n(x)(1 + x)a+1(1− x+ x2)b+1),

and simplifying gives

x6n−1 = (c
(
(a− b) + (b− a)x+ (a+ 2b+ 3)x2

)
+ h′n(x)(1 + x3)

=⇒ h′n(x) =
x6n−1 − (c

(
(a− b) + (b− a)x+ (a+ 2b+ 3)x2

)

1 + x3

=⇒ h′n(x) =
x6n−1 + x2

1 + x3
+

−x2 − (c
(
(a− b) + (b− a)x+ (a+ 2b+ 3)x2

)

1 + x3
.

Since hn is a polynomial, h′n must also be a polynomial. Since x6n−1+x2

1+x3 is a polynomial, we need
−x2−(c((a−b)+(b−a)x+(a+2b+3)x2)

1+x3 to be a polynomial; thus, we need the numerator to be 0. Setting

all the coefficients to 0, we get that a = b and −1− c(a+ 2b+ 3) = 0, and thus c = − 1
3(a+1) .
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Plugging back into our original expression, we have

lim
n→∞

hn(1) = − lim
n→∞

c ln(p(1))

= − lim
n→∞

− 1

3(a+ 1)
· ln

(
(1 + 1)a+1(1− 1 + 12)b+1

)

=
ln 2

3
.

9. Emily plays a game on the real line. Emily starts at the number 1 and starts with 0 points.
When she is at the real number a, she chooses a real number b such that a < b ≤ 100. She then
moves to b and gains 4(b−a)

(a+b)2
points. She repeats this process until she reaches the number 100.

Compute the smallest possible value of c such that Emily’s score is always less than c.

Answer: 99
100

Solution: Note that we can express 4(b−a)
(a+b)2

= b−a

(a+b
2 )

2 . Let the sequence of points that Emily

lands on be x0, x1, · · · , xn where x0 = 1 and xn = 100. Then, Emily’s score can be written as

n∑

i=1

xi − xi−1(
xi+xi−1

2

)2 ,

which is exactly the midpoint Riemann sum approximation for the integral

∫ 100

1

1

x2
dx .

Moreover, since the function f(x) = 1
x2 is a concave up function, the midpoint Riemann sum

approximation will always be less than the integral, and as n → ∞, the Riemann sum can get
infinitely close to the integral, by the definition of the integral. Thus, the smallest possible value
for c is ∫ 100

1

1

x2
dx =

[
−1

x

]100

1

=
99

100
.

10. Compute
∞∏

n=1

π arctan (n)

2 arctan (2n) arctan (2n− 1)
.

Answer: π
√
4

Solution: Let PN :=
∏N

n=1
π arctan(n)

2 arctan(2n) arctan(2n−1) be the Nth partial product. Notice that by
taking a logarithm and telescoping,

lnPN = N ln
(π
2

)
−

2N∑

n=N+1

ln(arctan(n)).

We compute this summation by approximating using Taylor series. Observe that if N is very
large, then 1/n is close to 0 for n ≥ N . Also observe that

d

dz
arctan

(
1

z

)
=

−1

z2 + 1
= −1 +O(z2).
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and limz→0+ arctan (1/z) = π/2, so we have for large n,

arctan(n) =
π

2
− 1

n
+O

(
1

n3

)
.

This gives for large n

ln(arctan(n)) = ln

(
π

2
− 1

n
+O

(
1

n2

))

= ln
(π
2

)
+ ln

(
1− 2

πn
+O

(
1

n2

))

= ln
(π
2

)
− 2

πn
+O

(
1

n2

)

using the Taylor series for ln(1 + x). Thus we compute

lnPN =
2N∑

n=N+1

(
2

πn
+O

(
1

n2

))

lnP = lim
N→∞

∫ 2N

N

2

πx
dx =

2 ln 2

π

by noting that the summation may be approximated by an integral with the approximation error

vanishing in the limit N → ∞. This gives us our answer of P = 41/π =
π
√
4 .


