
BMT 2023 POWER ROUND NOVEMBER 4, 2023

Maximum score: 145 points.
Instructions: For this test, you work in teams to solve multi-part, proof-oriented questions. Problems that
use the words “compute,” “find,” “draw,” or “write” require only an answer; no explanation or proof is
needed. Unless otherwise stated, all other questions require explanation or proof. The problems are or-
dered by content, not difficulty. The difficulties of the problems are generally indicated by the point values
assigned to them; it is to your advantage to attempt problems throughout the test. In your solution for
a given problem, you may cite the statements of earlier problems (but not later ones) without additional
justification, even if you haven’t solved them. Footnotes are not necessary to understand or solve the
contents of the round.

1 Graphs and Proofs (45 pts)
Welcome to the power round! We will learn a new form of proof, which you probably haven’t heard of. It
is a type of proof that lies at the center of modern cryptography and security–the zero-knowledge proof
(or ZKP).
To begin, let’s give some background on problems that ZKPs solve. Consider a group of people at an
event, like a math contest, who are friends with some of the other people at the event. If we wanted to
represent the relations between these people, we could use a point to represent each person and lines
between points to denote that the people represented by the points in question are friends. This makes
sense because friendships are symmetric relationships (if A is friends with B, then B is friends with A),
and no one is friends with themselves. Such a representation has a name.

Definition 1.1. A graph G = (V,E) is a set of vertices, V , and a set of edges, E. Each edge is itself
an (unordered) set of two distinct vertices. Vertices that share an edge between them are called
adjacent. The number of vertices in a graph is denoted |V | and the number of edges is denoted |E|.
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In the example above, vertices could represent people at our event, while an edge could indicate that
the two people sharing the edge are friends. Formally, one can record this graph with vertex set V =
{1, 2, 3, 4} and edge set E = {{1, 2}, {2, 3}, {3, 4}, {2, 4}}.
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Question 1.1 (2 pts). Draw a graph with |V | = 5 and |E| = 7 and give its vertex and edge sets.

Solution: There are many possible solutions to this problem. One example is the following graph:
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Its vertex set is V = {1, 2, 3, 4, 5} and its edge set is
E = {{1, 2}, {2, 3}, {3, 5}, {2, 4}, {1, 5}, {1, 3}, {1, 4}}.

Question 1.2 (2 pts). Find the vertex and edge sets of the following graph.
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Solution: The vertex set is V = {1, 2, 3, 4, 5, 6, 7, 8}. The edge set is
E = {{1, 5}, {2, 5}, {2, 6}, {3, 6}, {3, 7}, {4, 7}, {4, 8}}

Question 1.3 (2 pts). Draw the graph with the vertex set V = {1, 2, 3, 4, 5, 6, 7} and edge set E =
{{2, 3}, {4, 5}, {1, 3}, {3, 6}, {2, 6}}.

Solution:
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Question 1.4 (3 pts). Suppose a graph has n vertices. Compute the lowest number and highest
number of edges it could have.

Solution: The lowest number of edges possible is 0, since there is no obligation for a graph to have
edges.
In a graph with the highest number of edges, each of the n vertices would have an edge to each of
the other n− 1 vertices. In this case, there is one edge for each combination of two vertices, which
is equal to

(n
2

)
= n(n−1)

2
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Graphs can be used for a variety of situations, meaning that different situations could result in similar
graphs. For example, a graph to model three people who know each other could be very similar to a
graph modeling three cities that all have direct routes to each other. Functionally, these graphs are the
same, so we have an important distinction for them.

Definition 1.2. An isomorphism between graphs G1 and G2 is a function f that maps vertices from
one graph to another so that edges in G1 are also represented in G2, and edges in G2 all correspond
to some edge of G1. More precisely, f is an invertible function (also called a bijection) such that
{u, v} is an edge of G1 if and only if {f(u), f(v)} is an edge of G2.
We say graphs G1, G2 are isomorphic and write G1

∼= G2 if there’s an isomorphism between them.

Intuitively, an isomorphism between two graphs G1, G2 just means that one can re-label the vertices of G1

such that the resulting graph is exactly the graph G2. Here are two isomorphic graphs.
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One isomorphism f to get from the left graph to the right graph is given by f(1) = 3, f(2) = 4, f(3) =
1, f(4) = 2.

Question 1.5 (4 pts). For the following eight graphs, find all isomorphic pairs. If you find two
graphs that are isomorphic, give the isomorphism from one to the other (either order is fine).
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Solution: There may be more than one possible isomorphism for a pair of isomorphic graphs.
G2

∼= G8. One isomorphism f from G2 to G8 is defined as f(1) = 1, f(2) = 5, f(3) = 2, f(4) =
6, f(5) = 3, f(6) = 7, f(7) = 4, f(8) = 8
G1

∼= G5. One isomorphism f from G1 to G5 is defined as f(1) = 1, f(2) = 4, f(3) = 6, f(4) =
7, f(5) = 2, f(6) = 3, f(7) = 5, f(8) = 8
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Question 1.6 (5 pts). If we consider isomorphic graphs to be the same, how many distinct graphs
are there with four vertices?
Solution: There are 11 of them. If graphs have a different number of edges, they can’t be iso-
morphic. Thus, we can count the number of distinct graphs with 0 to 6 edges (the minimum and
maximum number of edges possible). All 4-vertex graphs with 0, 1, 5, or 6 are isomorphic to all
other 4-vertex graphs with the same number of edges. If a graph has 2 edges, the edges either
share a vertex or they don’t, so there are 2 distinct graphs. Similarly, among 4-vertex graphs with
4 edges, the 2 “missing” edges (edges that would be present on the 6-edge graph) either share a
vertex or don’t, resulting in 2 distinct 4-edge graphs.
If there are 3 edges, they either form a cycle (such as {(1, 2), (2, 3), (1, 3)}), contain edges that
can be ordered into a line (such as {(1, 2), (2, 3), (3, 4)}), or all share the same vertex (such as
{(1, 2), (1, 3), (1, 4)}. All other graphs with 4 vertices and 3 edges are isomorphic to one of these.
Thus, there are 3 distinct graphs with 3 edges, so there are 11 distinct graphs in total.

Question 1.7 (2 pts). Given two graphs G1, G2, both with n vertices, how many bijections are there
between the vertex sets of the two graphs?

Solution: Each bijection corresponds to a unique permutation of the vertices, so there are n! bijec-
tions.

Question 1.8 (5 pts). Draw two isomorphic graphs with exactly 6 vertices and with exactly one
isomorphism between them.

Solution: Here is one example of graphs with only 1 isomorphism:
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Let’s now develop a deterministic procedure to check whether graphs are isomorphic to each other.

Question 1.9 (3 pts). Suppose someone hands you two graphs (e.g. their vertex and edge sets)
G1 = (V1, E1) and G2 = (V2, E2) which both have n vertices and m edges. Devise a method to
check if the two graphs are isomorphic.

Solution: There only exist n! ways to assign the vertices of G1 to G2. Thus, we could check each of
those assignments to determine whether it is a valid isomorphism. If one of those assignments is
an isomorphism, then the graphs are isomorphic. Otherwise, the graphs are not isomorphic.

It might be that your method is not very fast to implement. Suppose I ask you to pay for your method (or
algorithm).

Definition 1.3. The cost of an algorithm is defined as the sum of the costs of the basic operations
required to implement the algorithm. For graphs, if you need to iterate through the elements of an
edge set, it costs you $1 per element. If you want to check if an element is in a set, this also costs
you $1. For instance, if I wanted to look at every edge in G1, it would cost me $m.
Solution: For the purposes of this round, we only care about the asymptotics, so we were a bit
lenient with off-by-one errors.
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Question 1.10 (4 pts). Compute the possible cost of your algorithm to Question 1.9 in the worst
case. Your answer may depend on m and n. Don’t worry about making the cost of the algorithm
as small as possible; a correct algorithm and correct cost analysis is all we need.

Solution: For each of the n! possible assignments of vertices from G1 to G2, each of the m edges
needs to be checked to determine whether an isomorphism has been found. Thus, the total cost is
$mn!. For the next two questions, let Cold be the answer to Question 1.10.

Question 1.11 (2 pts). If I double m 7→ 2m, compute the new cost in terms of Cold.

Solution: The new cost is $2mn!, so the new cost is 2Cold.

Question 1.12 (2 pts). If I increment the number of vertices n 7→ n+1, determine an expression for
the new cost in terms of Cold.

Solution: The new cost is $m(n+ 1)!, which is (n+ 1)Cold.

Thus, figuring out whether two graphs are isomorphic can be expensive. However, this doesn’t neces-
sarily mean that once you know the answer, proving to someone else that two graphs are isomorphic is
expensive. Suppose there are two friends, Paula and Victor. Paula tells Victor that she thinks two graphs
G1 and G2 are isomorphic. Victor seems skeptical, so Paula does the following to prove it.

System 1.4. For some graphs G1 and G2:

1. Paula hands Victor the complete evaluation table of a function, f , she claims is an isomor-
phism from G1 to G2. That is, she hands him a table with all possible inputs (the vertices of
G1) and their matching output:

vertex f(vertex)
v1 w1

v2 w2

...
...

vn wn

2. Victor checks if f is actually an isomorphism. If it is, he believes Paula’s claim that the graphs
are isomorphic. Otherwise, he doesn’t believe Paula.

For all of our systems, if Paula sends any extraneous information that is not outlined in the scheme,
Victor rejects automatically (here, she HAS to send an evaluation table of the correct size, even
though it may be incorrect, e.g. if we have G1 ̸∼= G2).
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Question 1.13 (2 pts). In terms of n = |V1| and m = |E1|, compute the size of the evaluation table
of the isomorphism f . Assume that a vertex is of size 1.

Solution: There are n rows in the table, one for each of the n vertices. Each row has 2 columns, so
the total size is 2n.

Question 1.14 (4 pts). Write an algorithm, using the evaluation table that Paula provided, that
checks Paula’s claim.

Solution: For each edge (vi, vj) in G1, verify that (wi, wj) is in G2. Since they have the same number
of edges, we are done.

Question 1.15 (3 pts). Again, consider charging the algorithm with the cost scheme outlined in
Definition 1.3. Compute the cost of your algorithm in the worst case. Any operation without an
explicitly defined cost can be assumed to be free.

Solution: $2m, as we charge $m for iterating through the edge set and have to do $m lookups in
G2.

Thus, it is often much more efficient to check a proof than it is to solve a problem from scratch! This makes
intuitive sense; checking is a “linear” operation, involving just checking that each step is sufficiently
justified by previous steps. Presenting your own proof requires much more thinking and insight1. This
motivates the following definition.

Definition 1.5. For the purposes of a graph problem with one or more graphs Gi, an efficient
algorithm means that the cost of the algorithm is a polynomial in terms of m = maxi |Ei| and
n = maxi |Vi| (the exponents cannot depend on m or n). Algorithms with costs $2n and $mn are not
efficient, but $m2n and $m100 are.

You can assume the following conjecture is true for the rest of the round (although no one has proved it
yet):

Conjecture 1.6. There exists no efficient algorithm in general to determine whether two graphs G1

and G2 are isomorphic.

We suspect that even though it’s easy to check an isomorphism, it’s hard to find one.

2 Probabilistically-Checkable Interactive Proofs (31 pts)
In mathematics, a proof is generally accepted if the person reading it (a verifier) finds that it is logically
consistent and justifies the claims made. However, this is not the only way to prove something. For
instance, if a friend claimed to know the winning numbers to a lottery ahead of time and hit the jackpot
5 times in a row, it would generally be acceptable to believe that they have a means of knowing those
numbers ahead of time, even if there is a chance that they had simply been lucky in guessing. By asking
them to guess more and more lottery numbers, the chances get better and better.
Suppose a newly-released, efficient algorithm is claimed to simulate fair dice rolls. In this case, the inten-
tion is that each outcome of a die has a 1

6 chance of occurring. Paula claims that the algorithm is faulty,
and each roll will instead always produce the same number.

1This is exactly the distinction between the complexity classes P and NP , the subjects of one of the Millenium Problems!
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System 2.1. To prove the die-rolling algorithm returns the same result for each roll, Paula does the
following.

1. Paula tells Victor what the algorithm will roll.
2. Victor uses the efficient algorithm to simulate the rolls of the die once.
3. If Victor’s simulated roll of the dice matches what Paula predicted, he believes her claim that

the algorithm produces the same result for each roll. Otherwise, he doesn’t believe Paula
since her prediction was wrong.

In this case, if the algorithm returns the same result for each roll, and Paula knows this result, she should
always successfully predict the outcome of the simulated die roll. Consequently, Victor would always
believe her.

Question 2.1 (2 pts). Suppose the die-rolling algorithm correctly simulates a fair die, returning
one of six random outcomes, each with probability 1

6 . In this case, Paula’s claim would be false.
Compute the probability that she still correctly predicts the outcome of the simulated roll, which
would convince Victor that the die simulation is faulty.

Solution: If the algorithm simulates a fair die correctly, then Paula has a 1
6 chance of guessing the

roll correctly.

Under the right conditions, systems like the one above are probabilistically-checkable interactive proofs.

Definition 2.2. A probabilistically-checkable interactive proof (PCIP) system is a coordinated
algorithm between two players, named Victor and Paula. It consists of back-and-forth communi-
cation between the two parties, wherein Paula is trying to prove a statement x to Victor, and Victor
can only run efficient algorithms.

• The completeness of the system is the probability that Victor believes x is true given that
Paula’s claim is actually true. In other words, it measures Paula’s ability to prove a true
statement to Victor.

• Suppose x is false, but Paula is trying to make Victor believe it is true. The soundness of the
system is the maximum probability, over all possible strategies of Paula (where she has to
send the same messages as if she were honest), that Victor believes Paula. In other words, it
measures Victor’s ability to avoid believing false statements from Paula.

We require that a PCIP satisfies the following properties:

1. The completeness is at least 2/3.
2. The soundness is at most 1/3.

For instance, the completeness of System 2.1 is 1, while the soundness of the system is the answer to
Question 2.1.

System 2.3. Suppose that the dice algorithm from System 2.1 is faulty, but returns the number 3
with probability 1

2 and the other numbers each 1
10 of the time. Suppose Paula knows this and makes

the claim to Victor that the algorithm has these new probabilities. Paula uses the same procedure
as System 2.1, where she always tells Victor that a 3 will be rolled.
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Question 2.2 (2 pts). Compute the completeness of System 2.3; that is, when the distribution is
indeed like this, find the probability that the system succeeds.

Solution: 1
2 , since that is the probability that the algorithm will roll 3.

In fact, the 1/3 and 2/3 values in Definition 2.2 are somewhat arbitrary. Indeed, many other sets of values
work, as long as the completeness is greater than the soundness.

Definition 2.4. For a PCIP system S, define the repetition system REPℓ,T (S) as the system where
the pair repeats the system S ℓ times independently (i.e. all randomness between runs is indepen-
dent) with a threshold T ∈ [0, 1], where Victor believes Paula overall if he believes her claim after
at least Tℓ of the repetitions.

Question 2.3 (5 pts). Compute some T and ℓ such that REPℓ,T (System 2.3) has completeness greater
than 2

3 and the soundness less than 1
3 .

Solution: ℓ = 2 and T = 0.5 are sufficient. If Paula’s claim is true, then the system has a 1−
Ä
1
2

ä2
=

3
4 > 2

3 chance of succeeding at least once out of the two trials. If Paula’s claim is false, then there is
a 1− (56)

2 = 11
36 < 1

3 chance of at least one of the rolls being 3, which would falsely convince Victor
of her claim.

For large enough ℓ, we can utilize the law of large numbers.

Theorem 2.5. The law of large numbers says that when a random experiment (such as a PCIP) is
repeated enough times, the fraction of trials that correspond to each possible outcome gets arbitrar-
ily close to the probability of that outcome happening.

For instance, suppose Victor has a probability p of believing Paula in a PCIP and a probability 1 − p of
not believing her. If this PCIP is run for large enough ℓ, then Victor will believe Paula in about pℓ of those
trials and will not believe her in about (1− p)ℓ of those trials.

Question 2.4 (5 pts). Suppose that Victor and Paula run a PCIP system S. Find an explicit threshold
T where there exists an ℓ such that the soundness of REPℓ,T (S) is arbitrarily close to 0 and the
completeness of REPℓ,T (S) is arbitrarily close to 1. Justify.

Solution: T can be any threshold between 1
3 and 2

3 . Let ϵ > 0. With probability 1, by law of
large numbers, for large enough ℓ, if Paula’s claim is true, then at least 2

3ℓ − ϵ > Tℓ of the trials
will succeed, so completeness is arbitrarily high. Similarly, if Paula’s claim is false, then at most
1
3ℓ+ ϵ < Tℓ of the trials succeed, so soundness is arbitrarily low.

To illustrate another situation where a PCIP system could be useful, let’s tackle a problem similar to
Question 1.14. Paula and Victor still have access to two graphs G1, G2 with the same numbers of vertices
and edges, but Paula wants to prove that the graphs are NOT isomorphic (this is her statement x).
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Question 2.5 (3 pts). Explain why our previous algorithm from Question 1.14, of sending the eval-
uation table of an isomorphism and checking it, is insufficient for proving that two graphs are NOT
isomorphic.

Solution: There are n! possible evaluation tables for 2 graphs. Verifying that one of those tables is
not an isomorphism does not prove that none of the other n! − 1 possible tables does contain an
isomorphism.

Thus, we must turn to a PCIP system.

System 2.6. Consider the following system:

1. Victor selects at random one of the two graphs G1 or G2 and sends to Paula a random iso-
morphic copy of this graph, G′.

2. Upon receiving G′, Paula tells Victor which of G1 or G2 she thinks G′ was copied from (i.e. if
she thinks it’s Gb, then she sends the number b ∈ {1, 2}).

3. If Paula tells Victor the correct answer, then Victor believes that G1 and G2 are not isomorphic;
otherwise, he rejects Paula’s proof.

Question 2.6 (4 pts). State an efficient procedure to generate an isomorphic copy of a graph uni-
formly at random. Assume that you can generate a random number in {1, 2, . . . , N} for $1. Give
the cost of your procedure (still charging the set operations from before).

Solution: To generate a random isomorphic copy, we first randomly generate a function f to map
the vertices of the original graph to those of its copy. To do this, we can generate random num-
bers from {1, 2, . . . , N} without replacement (so we remove a number i from the set when it is
randomly generated) until all numbers have been generated. Then, we define f(1) to be the first
number generated, f(2) to be the second number generated, and so on. Since this requires n ran-
dom numbers to be generated, the cost of this is $n. Afterwards, the edges from the original graph
need to be copied onto the copy (to ensure f is a graph isomorphism), which takes $m. The total
cost is $(n+m).

Question 2.7 (3 pts). Suppose Paula wasn’t honest and the graphs were actually isomorphic. Ex-
plain why Paula has no hope, past random guessing, of figuring out which graph G′ came from.

Solution: The isomorphic copy sent by Victor would be isomorphic to both graphs, so it could have
been generated from either graph. Thus, Paula has no way of distinguishing between the two.

However, as is, this isn’t quite a PCIP since the completeness and soundness are lacking a bit.
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Question 2.8 (2 pts). Compute the completeness of this system. That is, if the graphs are not
isomorphic and Paula is able to tell them apart, then compute the probability Victor believes this.

Solution: 1, since Paula doesn’t need to rely on randomness to tell the graphs apart.

Question 2.9 (2 pts). Compute the soundness of this system. That is, if the graphs are isomorphic
and Paula is lying, then compute the maximum probability Victor believes her. HINT: Paula sends
exactly one piece of information to Victor and cannot send anything else.

Solution: 1
2 , since Paula has a 1

2 chance of guessing the right graph.

Question 2.10 (3 pts). Explain how to amplify soundness and completeness to the 1/3 and 2/3
thresholds that are necessary, i.e. to make the resulting scheme a PCIP.

Solution: Victor can run 2 independent trials and require Paula to be correct in both trials to believe
her. Completeness is still 1, but soundness is now 1

2 ·
1
2 = 1

4 < 1
3 since Paula would have to correctly

guess twice.

3 Zero-Knowledge Proofs (37 pts)
System 1.4 provides a way for Paula to prove to Victor that two graphs are isomorphic. However, it
requires her to give an isomorphism f to Victor. In some situations, Paula may not necessarily want to
give out full information during a proof. To determine what Victor learns from running an interactive
proof with Paula, we consider the transcript of communication of the proof.

Definition 3.1. A transcript of communication is a record of the messages that were exchanged
between Victor and Paula.

For instance, if Victor and Paula run System 1.4, the transcript would be the entire evaluation table of
f that Paula passes to Victor. Other information during this proof that wasn’t shared, such as Victor’s
work to verify Paula’s isomorphism, is not included in the transcript. In other words, the transcript of
communication should only include information that is visible to both Victor and Paula during the proof.

Question 3.1 (2 pts). Describe what information is included on the transcript of communication
from running System 2.6.

Solution: The transcript of communication is a graph G′ = (V ′, E′) (two sets), and the number b.

Question 3.2 (4 pts). Suppose an efficient algorithm M exists that produces the transcript of com-
munication for a proof system. Explain intuitively why the existence of M indicates that Victor
learns no secret knowledge from interacting with Paula within the proof system. HINT: Victor can
run efficient algorithms.

Solution: Since Victor can run M by himself, that means any interaction with Paula could be
simulated and so Victor cannot gain any new information running M couldn’t have given him.

Many proof systems, such as System 2.6, rely on randomness that occurs during the proof. In these
cases, even when using the same graphs, the transcript of communication between Victor and Paula is
not fixed due to the randomness that occurs. In this case, we consider all possible transcripts that could
occur as well as the probability each one occurs. A function that describes this relation is a probability
distribution.
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Definition 3.2. In general, a probability distribution for a random experiment is a function P that
takes in any possible outcome as an input and outputs the probability that outcome occurs.

For example, the possible outcomes of a roll of a six-sided die are 1, 2, 3, 4, 5, and 6. Since the die is fair,
for any integer 1 ≤ x ≤ 6, P(x) = 1

6 .
Two probability distributions are equal in distribution if, for each outcome in the first distribution, a
corresponding outcome in the second distribution also has the same probability. For instance, the distri-
bution of whether the roll of a fair six-sided die is even or odd and the distribution of the result of flipping
a fair coin are equal, since the probability of each event (even or odd, heads or tails) is 1

2 .

Question 3.3 (3 pts). Give another example of two simple random experiments whose outcomes
are equal in distribution, but the outcomes are not necessarily the same.

Solution: Another example could be spinning a spinner with 10 equal sections, where 2 of them are
winning and another with 10 equal sections, where 8 of them are winning. Then, the distributions
of winning/losing in both are equal, though the outcomes which are 20% are winning on the first
spinner and losing on the second spinner, which are different outcomes per se.

Since a transcript of communication contains all messages Victor receives from Paula during a proof, we
can use this transcript to determine whether or not Victor learned any unnecessary information during
the proof. Proofs where Victor does not learn any additional information are said to be zero-knowledge.

Definition 3.3. A zero-knowledge proof (ZKP) system to prove a statement x is a PCIP system
and an efficient algorithm M (called the simulator) where the output generated by M on input x
is equal in distribution to Paula and Victor’s transcript of communication (in the case where the
statement is correct and Paula knows the proof). That is, if T is some transcript of messages, we
must have P(M(x) = T ) = P(Paula and Victor make T ).

In a sense, M “indistinguishably simulates” a possible communication between Victor and Paula.2

We can reanalyze our previous systems and see if they have the zero-knowledge property.

2Technically, this is the notion of honest-verifier perfect zero-knowledge, but that distinction does not matter for us here.
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Question 3.4 (6 pts). Show that the algorithm you designed in Question 1.14 is a PCIP system, but
not a ZKP system. HINT: You may assume conjecture 1.6, that there is no efficient way to tell if two graphs
are isomorphic.

Solution: Note that if Paula has the evaluation table, then with probability 1 all the edges will be
satisfied and Victor will be convinced, so completeness is 1. For soundness, if the graphs are not
isomorphic, then there exists no isomorphism between them; therefore, no matter what evaluation
table Paula sends, Victor will not believe her. Thus, this is a PCIP system.
However, this is not a ZKP system. If it was, then there would exist an efficient simulator M
which would just make the evaluation table (which is not random, so the distribution is just the
isomorphism with probability 1), i.e. it would find the isomorphism. This would efficiently solve
Graph Isomorphism, which is impossible under conjecture 1.6.

Question 3.5 (4 pts). Show that System 2.6 is a ZKP system.

Solution: We have already shown it’s a PCIP system, so it’s sufficient to show the zero-knowledge
property. To create a simulator, we can select a graph ($1, create a random isomorphic copy (answer
to question 2.6), then return the correct selection from Paula’s side (free) all efficiently. Clearly their
sum is still polynomial, so we’re done.

Now, let’s refine the scheme from Question 1.14 to make it zero-knowledge. We will do this by introducing
some randomness. Suppose we have two graphs G1, G2 that Paula wants to prove are isomorphic.

System 3.4. Consider the following system, where Paula knows an isomorphism f from G1 to G2.
Assume that |V1| = |V2|.

1. Paula chooses a random bijection g and sends H = g(G2), the graph you get by putting G2

through this isomorphism.
2. Victor chooses a random number b ∈ {1, 2} and sends b to Paula.
3. Paula then sends the evaluation table of a bijection h from the vertices of Gb to the vertices of

H . If b = 1, h(v) = g(f(v)). If b = 2, h(v) = g(v).
4. Victor believes Paula if h is an isomorphism (it respects edges).

Let’s analyze this scheme.
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Question 3.6 (4 pts). Compute the soundness of this scheme.

Solution: Paula’s best strategy is as follows. She chooses some isomorphism g; it doesn’t matter
what it is. If b = 2, she can return back the isomorphism, and if b = 1 she cannot return g◦f because
since G2 and H are isomorphic and G1 and G2 are not, it follows G1 and H are not. Thus, she can
succeed with probability at most 1

2 .

Question 3.7 (2 pts). Compute the completeness of this scheme.

Solution: We again have completeness 1, as no matter what, Paula will present a correct h if she
has f , if b = 1, g(f(v)) is still an isomorphism (and in the b = 2 case she will trivially give an
isomorphism regardless of whether she knows f ).

Question 3.8 (8 pts). Note that the transcript of messages sent is the triple (H, b, evaluation table of
h). Find an efficient algorithm M to generate the transcript between the two players. Analyze the
cost of your algorithm to show it is efficient.

Solution: Do these things out of order. First, sample a random bit b ∈ {1, 2}. Now, make a random
isomorphism h and define H = h(Gb). We note that

1. If b = 1, H = h(G1) = h(f−1(G2)), so g = h ◦ f−1 is a uniformly random isomorphism
between the two graphs. To see this, note that f−1 is one-to-one, so for all the x’s, f−1(x) gets
mapped to different outputs. Further, h is equally likely to map any input y to any output
z, so each f−1(x) is equally likely to be mapped to any output and each x gets mapped to a
distinct output, making it a random isomorphism. We ought to return g◦f = h◦(f−1◦f) = h,
so we are returning the correct function.

2. If b = 2, H = h(G2) so g = h is a random isomorphism from G2 to H and thus we return the
correct function.

As before, sampling a random bit costs $1, and sampling a random isomorphism costs $n iterating
through E2 to use the look-up table costs $m. Overall, this is still polynomial in m+ n.
Thus, using the completeness/soundness amplification we noted prior, System 3.4 is a ZKP system.

Now that we’ve found examples and non-examples of ZKP systems, let’s consider how they behave when
used together. For instance, suppose Victor wanted to solve question Question 1.5 with help from Paula.
System 2.6 only allows Victor to ask about 2 graphs at a time, but he has to check 8. To resolve this, he
could just run the system multiple times, once with each combination of 2 different graphs.

Definition 3.5. Given ℓ PCIP Systems S1, S2, . . . , Sℓ, their serial composition is the result of running
them one after another independently. That is, Paula tries to convince Victor a statement x1 is true
through a PCIP protocol S1, then convinces Victor about a (possibly different) statement x2 through
S2, and so on. All messages related to the system Sj must be sent/received before the first message
of Sk, for all j < k. You may assume that l is independent of the time it takes to run each PCIP
system.
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Question 3.9 (4 pts). Show that the serial composition of multiple zero-knowledge proofs will
always result in an interaction with the zero-knowledge property.

Solution: Because each proof in the serial composition is independent of the others and has the
zero-knowledge property, a simulator exists for each one. A transcript for the serial composition
consists of the serial composition of the transcripts produced from each individual proof. This
transcript can be generated efficiently by running each of the simulators for the individual proofs
sequentially, so an algorithm that runs the simulators for the individual proofs in order is a simu-
lator for the sequential compositions of proofs.

4 ZKP Systems From Other Hardness (32 pts)
In computer science, we often struggle to find efficient algorithms for problems, so we conjecture that they
are hard. As we saw with graph isomorphisms, assuming this allows us to get zero-knowledge schemes.
Let’s use another common conjecture to form another zero-knowledge proof scheme. For the purposes of
this section, p is a very large prime number.

Definition 4.1. An integer g (mod p) is called a generator if every number in {1, 2, . . . , p − 1} can
be written as ga (mod p) for some a.

Here, in the modular arithmetic setting, we charge costs a little differently: adding or multiplying two
numbers mod p costs $1. Making random numbers still costs the same. An algorithm is efficient in
modular arithmetic if it’s a polynomial in log2 p, the number of binary digits in p.

Question 4.1 (6 pts). Devise an efficient algorithm for computing ga mod p.

Solution: One can use the following algorithm. Write a in its binary representation a =

a⌈log2 p⌉alog2 p−1 . . . a1a0. Then, we can compute g, g2, g4, . . . , g2
k

for 2k > p in ⌈log2 p⌉ multiplica-
tions by repeatedly squaring. Then we compute ga =

∏
i aig

2i mod p. This is at most ⌈log2 p⌉
multiplications mod p, so we end up with a cost less than 3 log2 p, which is efficient.

It turns out that undoing the operation is much more difficult.

Conjecture 4.2 (Discrete Logarithm Assumption). Given a generator g and ga mod p for some a
in {1, 2, . . . , p− 1} that you do not know, there is no expected efficient algorithm to find a (i.e. one
whose cost is, on average over all randomness, polynomial in log2 p).

Before we can harness this, we should see why modular arithmetic plays nicely with randomness.
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Question 4.2 (3 pts). Show that given a fixed number N , then if we randomly pick R in {0, 1, . . . , p−
1}, then N +R mod p is equal in distribution to R.

Solution: Note that for a fixed r ∈ {0, 1, . . . , p − 1}, P(N + R ≡ r (mod p)) = P(R ≡ r − N
(mod p)) = 1

p , giving all the outcomes the same probabilities as P(R = r) = 1
p .

Question 4.3 (3 pts). Show that given a fixed number N not equivalent to 0 (mod p), if we ran-
domly pick R in {1, 2, . . . , p− 1}, then NR mod p is equal in distribution to R.

Solution: Note that for a fixed r ∈ {1, . . . , p− 1}, P(NR ≡ r (mod p)) = P(R ≡ N−1r (mod p)) =
1

p−1 , giving all the outcomes the same probabilities as P(R = r) = 1
p−1 .

Suppose now that everyone has access to the same prime p and a generator g (mod p). Paula picks a
random number α from the set {1, 2, . . . , p− 1} and gives Victor u = gα. Victor and Paula want to make a
scheme so Victor can identify Paula in communications, without Victor himself being able to impersonate
Paula.

Question 4.4 (20 pts). Construct a ZKP scheme that allows Paula to convince Victor that she knows
α, and does not allow others to convince Victor they know α. Here is a possible scheme with some
steps removed that you can use as a template.

1. When she wants to log in, Paula chooses randomly αt ∈ Zp (where Zp is the set {0, 1, 2, . . . , p−
1}), computes ut = mod p and sends ut to Victor.

2. Victor chooses randomly c ∈ Zp and sends c to Paula.
3. Paula computes αz = mod p and sends it to Victor.
4. Victor accepts the proof if gαz ≡ (mod p).

Discuss the soundness and completeness of your scheme, and provide an efficient simulator for the
transcript.

Solution: One solution is as follows.
Protocol

1. When she wants to log in, Paula chooses randomly αt ∈ Zp, computes ut = gαt mod p and sends ut
to Victor.

2. Victor chooses randomly c ∈ Zp and sends c to Paula.

3. Paula computes αz = αt + αc mod p and sends it to Victor.

4. Victor accepts the proof if gαz ≡ ut · uc (mod p).

Completeness Now, if Paula has α, then this equation will always be true as

gαz ≡ gαt+αc ≡ gαt · (gα)c ≡ ut · uc (mod p)

and the completeness of the scheme is 1.
Soundness Suppose that the prover is not Paula. Assume for the sake of contradiction, she had a strategy
with probability s > 1/3 of succeeding a trial. Then, she has some adversarial strategy for choosing ut.
Then at this point, if Victor chooses some random c in step 2, Paula has a follow-up αz . The probability
that this (c, αz) work is s, by definition. Furthermore, if Victor chooses some other random c′ in step
2, Paula similarly has a follow-up α′

z where this is accepted with probability s again. With probability
1 − 1

p , we have that c ̸= c′. Suppose someone ran this scheme as an algorithm in a black box, playing
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both the role of Paula and Victor. Since it doesn’t require α, we claim this violates the Discrete Logarithm
assumption for general u, i.e. one can find α for arbitrary u. Since Victor believed Paula in both cases, we
must have that gαz ≡ ut · uc (mod p) and gα

′
z ≡ ut · uc

′
(mod p). This yields

ut ≡ gαzu−c ≡ gα
′
zu−c′ (mod p)

gαz−α′
z ≡ uc−c′

(gαz−α′
z)1/(c−c′) ≡ u

Thus, we can calculate that α = αz−α′
z

c−c′ (mod p − 1) for any u. We will finally show that this algorithm
would be efficient. In expectation, it takes p

(p−1)s2
< 2 · 9 < 20 repetitions to get c ̸= c′ such that Victor

accepts Paula’s proof in both cases. The algorithm thus has expected cost 20×cost of one run and the cost
of one run can be seen to be at most $(K1 + 3K2 log2 p) for some constants K1,K2, as we do a constant
amount of multiplications/additions and three exponentiations. We thus have an expected efficient algo-
rithm that violates Conjecture 4.2. Thus, soundness is less than 1/3.
Efficient Simulator Finally the transcript is (ut, c, αz). c can be sampled efficiently for $1. Now, αz looks
random because although c is now fixed and thus it is sufficient to just sample αz ∈ Zp at random with
another dollar. Computing ut = gαz · u−c requires at most $ log2 p. Thus, the cost of the algorithm is at
most for some constant K, $K log2 p + 3, which is a polynomial in log2 p. Thus, the system is indeed a
ZKP.
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